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1. INTRODUCTION

Aging aircraft, both civilian and military, are prone to various types of deterioration and
damage in their metallic components including general corrosion and cracking due to stress
corrosion and fatigue. A technique pioneered at ARL' to extend the life of these aircraft is
to bond fibre-composite reinforcements, such as boron/epoxy or graphite epoxy, over the
damaged regions. In demanding situations, such as highly-stressed thick-section repairs,
accurate methods of design and analysis are needed. This report details the development of
two mathematical models for the adhesive shear-strain distribution in a scarfed repair: the
end-tapered double-lap joint (Figure la) and the stepped double-lap joint (Figure lb).
These two joints are idealised representations of an end-tapered repair. An actual
end-tapered repair or doubler, such as the ARL2 developed F-Ill wing-pivot-fitting (WPF)
doubler (Figure 2), has a geometry as shown in Figure Ic, where after lay-up the doubler
has been inverted and the outer plies bent over by pressure in an autoclave. Also in this
report is a comparison between the mathematical model developed herein and a finite
element (FE) analysis for both the end-tapered and the stepped double-lap joint. Finally a
comparison is made between the measured strains in the outer adherend of a boron doubler
(Figure 1 c) and the strains predicted by the models of the end-tapered and the stepped
double-lap joints.

The primary reason for tapering the
ends of a composite doubler is to
reduce the peel and shear stress, which
arises there due to the load transfer (a) end-tapered double-lap joint
conditions. A high peel stress (tensile
stress that acts transverse to the plane
of the bond) is detrimental because the
interlaminar tensile strength of a fibre (b) stepped double-lap joint t
composite lay-up is typically less than
10% of its longitudinal tensile strength.
For example, the longitudinal tensile
strength3 of unidirectional boron/epoxy (c) schematic of actual joint
is 1260 MPa whereas its interlaminar
tensile strength is only 61 MPa - and
the ratio of interlaminar to longitudinal
toughness is even smaller than that of
the strengths. Adhesives are also -" aluminium inner adherend

susceptible to failure induced by peel adhesive
stresses. Tapering the ends reduces the I fibre-composite outer adherend
adhesive shear-stress concentration at
the ends of the doubler and hence also
reduces the peel stress resulting from
the unbalanced shear stress acting on Figure 1
the doubler. An optimum taper angle is
generally about three degrees since this Schematic of the Two Mathematical Models and
gives an adequate degree of stress relief an Actual Doubler
while ensuring the size of the doubler is
not too great. The modelling of the
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peel-stress distribution is a more difficult mathematical problem and is not addressed in this
report, however, minimising the shear will also minimise the peel stress.

The application of doublers to an aircraft structure can induce some bending due to the
added eccentricity of the load path. However, most aircraft structures have supports that
act to reduce this bending. For example, the WPF of the F-I II (Figure 2) has stiffeners
and shear webs and is bolted to the sub-structure. The strength of the single-sided

end tapering sftening s end tapering

DA win pivotin fitrip

Salum ninium n skin lo e d o b e

steel bolts stiffener runout
UP

OUTBOARD

Figure 2. F-111 Doubler-Section Looking Aft on Right Wing.

end-tapered joint will then approach that of the end-tapered double-lap joint. Analysis of
the single-sided end-tapered doubler can then be approximated by considering either the
idealised geometry of the end-tapered double-lap joint (Figure la) or the stepped
double-lap joint (Figure ib) and by using a 'mechanics of solias' approach similar to that
employed by Hart-Smith' in the analysis of the double-lap joint.

2. THE END-TAPERED DOUBLE-LAP JOINT

2.1. Elastic Analysis
2.1.1. Analytical Development

In this analysis, it is assumed that the k----
adhesive deforms only by shear and that the t .- . F, to
adherends deform only by stretching in the
longitudinal direction. This one-dimensional p - t

approach works reasonably well for the Eti
non-tapered double-lap joint4 and should,
given the reduced peel stresses, work even
better for the end-tapered double-lap joint.-I H
Geometry and nomenclature for the
end-tapered double-lap joint is shown in
Figure 3. A fibre-composite outer adherend Figure 3. Geometry and Nomenclature
can be accommodated by using an effective for the End-tapered Double-Lap Joint
modulus in the longitudinal direction. As
most doublers employed at ARL have
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unidirectional reinforcement, the modulus along the fibre direction of a single ply can be
used. To aid the analysis, the joint is divided into two regions: the tapered region from x=0
to x-=I and the non-tapered region from x'-! to x-- (or t =0 to ý =-). The differential
equation describing adhesive deformation in the first region is derived below and the
differential equation for the second region can be found from the first by putting the angle
of taper to zero.

Force equilibrium in the horizontal direction dictates that:

dTo 0=0, (1)
dx

and,

d-T + 2c = 0. (2)
dx

Here, c is the adhesive shear stress and T. and T, are tractions in the outer and
inner adherends respectively. The elastic stress-strain relations for the
adherends are:

dS.._o =T, (3)

dx E, x tan0 + t)(

and,

d8i T T(
dx Eit (4)

The terms S. and 8, are the displacements of the outer and inner adherends
respectively. The elastic shear-stress shear-strain relation for the adhesive is:

T = Gy . (5)

In this analysis, the adhesive shear strain is averaged across the thickness of the
adhesive layer:

8o- 8iS= Ti(6)

Taking the derivative of equation 6 with respect to (w.r.t.) x and substituting in
equations 3 and 4 yields:



4

d _ ITo ) Tj (7)

Differentiating again w.r~t, x yields:

d 2  E, tan0+ to0E. EoTotan0 dT• 1 1Yx =) 1 X0)dx Edti

[ x2 11 Et 2 tan0+ to) 2  dx E41  (8)

but equations l and 2 imply T. = ot dx and d T. = -2T, so that equation
dx

8 becomes in terms of shear stress:

d 2 l Eo tan0+ to}T- E~tanOJtr(x)dx+ 2  i ()S= - , o° 0 + 2r 1 (9)
LEo(xtan0+ tJ

f 2
Multiplying both sides of equation 9 by E 2 tan 0+ t) ,substituting T = G,

and taking the derivative w.r.t. x yields the third-order ordinary-differential equation:

d3 Y+ 2tan6 d 2y _G F2 1 ldy
ax3  x tan0±+ to dX 2  _T1 _E, t, E~ aO ~ dxt' E .o ta n 0 + t oog

S4tan0 (10)
Ei tx tan0+ to)

Equation 10 is probably not soluble in closed form. It is amenable, however, to a numerical
solution using the NAG' subroutine D02HAF. This is a subroutine for solving boundary-value
problems involving ordinary differential equations of arbitrary order. The equations are
re-written as a system of simultaneous first-order differential equations and the problem solved
by a shooting and matching technique.

Numerical Algorithms Group library of mathematical subroutines.
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The boundary condition at x=O is obtained from equation 7:

dy( 0) P
dx ( rJEi ti"

The other two boundary conditions are derived by matching y and Y' at x=I from
the preceding solution with y and Y at t=O from the solution for the
non-tapered double-lap joint. The form of the solution for the non-tapered
double-lap joint is:

yni e , (12)

where the subscript n refers to the non-tapered double-lap joint and P, is the
load remaining at x=i to be transferred from the inner to the outer adherends at
x-l.

The solution shown above for the non-tapered double-lap joint can be obtained
from the previous equations by substituting 0 = 0 and tO=to in equation 8.
Then:

d 2Y= I [ I dTo 1 dTi 1 (13)
djj2 =Tf Eo to. d Ei ti d

Substituting the equilibrium equations 1 and 2 and equation 5 gives:

= I32 y/n, (14)

where

P2=9 + 2. (5

The solution of equation 14 over a semi-infinite domain is equation 12 above.
The boundary condition y(o) = 0 is implicit in this formulation. Solution over a
finite domain, p say, is:

Yn(t) =Acosh (5(p - ý))*Bsinh (5(p - (16)

P, in equation 12 is the load remaining at x-l to be transferred from the inner to
the outer adherends and is given by:
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P2=Ti - P Ei ti (17)2E, to + Ei ti"

The last term in equation 17 expresses the condition that at x - ,c the load is
distributed to each adherend according to its stiffhess.

Matching at x=l (4=0) implies that:

S=Y

TIP.__3 (18)TlEitio3'

and.

- P, (19)ilE, ti

Since P, is not known a priori neither are the boundary conditions at x-1.
Consequently, an iterative scheme was implemented on computer to solve the
governing differential equation (equation 10) and its boundary conditions
(equations 11, 18, and 19). The iterative scheme involved making repeated
guesses at the parameter P, until the load transferred to the outer adherends

(which was found by integrating equation 1) was equal to P Eo to
2E, to +Ei ti"

2.1.2. Comparison of the Elastic Model with an FE Analysis

An FE analysis of an end-tapered double-lap joint was set up in PAFEC. Only one quarter
of the joint needed to be modelled due to the twofold symmetry of the joint. The adhesive
and the ,tdhcrends were modelled using eight-noded isoparametric elements. Previous
experience in modelling double-lap joints dictated the need for four elements through the
thickness of the adhesive layer to achieve convergence. Adhesive shear strains were
calculated by subtracting the longitudinal displacements of nodes on either side of the
adhesive layer and dividing through by the adhesive thickness. The adhesive shear strain is
therefore averaged across the thickness, as in the analytical development, thus allowing
proper comparison. The graphs that follow show the effect of varying joint parameters on
the adhesive shear-strain distribution in the joint. Table I contains those joint parameters.
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Parameter Figure 4 Figure 5 Figure 6 Figure 7
value

1l (mmn 0.14-0.42 0.28 0.28 0.28

G (MPa) 600 600 600 600

E. (MPa) 208,000 208,000 208,000 72,000-208,000

0 (degrees) 2.7 2.7 2.7-8.0 2.7

t.0 (mm) 0.14 0.14-0.42 0.14 0.14

E, (MPa) 208,000 208,000 208,000 208,000

t, (mm) 6.36 6.36 6.36 6.36

l (mm) 27 27 27 27

P (N/mm) 2,3001 2,300 2,300 2,300

Table 1.
-05

NAG solution
.04 F.E. results

1-.0 14 mm

.0-C 28 mm
.03T ••-0 42 mm

.03

shear strain end of taper
.02•

01'
0 10 20 30 40 5C

Distance along Joint (mm)

Figure 4.

.05

0 -0.42 mm * NAG solution
,04 • t-0.28mm --- FE results

1 00 .014 mm

.03-

shear strain end of taper

.02-

.01

0 ..
0 10 20 30 40 5C

Distance along Joint (mm)

Figure 5.



.06

NAG solution

(68V - FE results

0 =5.4*
.04

shear strain

.02

0 10 20 30 40 50

Distance along Joint (mm)

Figure 6.

.05

NAG solution
.04 FE results

shear strain / 208000 MPa
E0 =12sWOo MPa end of taper

.02 Eo .72000 a

.01.M~

0ý

0 10 20 30 40 5C

Distance along Joint (mm)

Figure 7.

Figures 4,5,6, and 7 show that the model of the end-tapered double-lap joint, assuming
elastic adhesive deformation, is in excellent agreement with the finite-element analysis for a
wide range of joint parameters.

2.1.3. An Approximate Analytical Solution: a First-Order Perturbation Solution

An approximate analytical solution to the differential equation governing elastic
deformation of the adhesive (equation 10) can be found by proposing a regular perturbation
expansion of the shear strain:
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y (x) = yo(x) + ey, (x) + £2y2(x) + ..... (20)

where the parameter E is a small number much less than one. This parameter is

associated with term tanO in equation 10. If the taper angle, 0 , is very small
then tanO will also be small. Rewriting equation 10 in terms of c gives:

'+t)ym'+ 2e':gr 0+t 1]Y'+ "c- (21)
(X [Lii (X i til

The first order perturbation expansion of the shear strain (i.e. the first two terms

on the right hand side of equation 20) is then substituted into equation 21 and

terms with like powers of c collected. The zeroth order terms are:

o 10 = i-ti\ t E ]Y. (22)

The relevant boundary conditions are:

ýo(0) = P

T iEiti~l

'YO ()T nEit43'IPI

The parameterp 1 is given by:

P1¢ _[( + I_/•
T13= LgE--- Eotj,

The zeroth order function, y., is then:

Yo(x) =A cosh [I 0(I -x)]+Bsinh [0,o(] -X)]+C (23)

The parameter 13 is given by:

Ei L ti-: EXt )

The constants A, B, C are found by substituting the boundary conditions into
equation 23
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cosh(1°1 (p-P1 )
A[osinh (0.ol) "qEiti

P1= IlEitip0;

C=B-• - A.

Note that the parameter P, is not yet determined. It is found by setting the

integral of the shear stress equal to the load per-unit-width that has to be

transferred from the inner to each outer adherend.

The first order terms found on substituting the perturbation expansion into

equation 10 are:

t///t +o,,+ 2,0/.= G 2x / G(Itoo 1 )y' + 42-1- (24)

The relevant boundary conditions are:

YI ,) =0;
Y11(o) 0,o

The homogeneous solution to the above differential equation is:

'yh"'(x) =Dcosh [I3.(I - x)]+Esinh [13(l -x) ]+F. (25)

The particular solution to the above differential equation, having first

substituted for yo(x), is:

yp-(x) =aa x+bb x cosh 1P4o(l _x)•cc x sinh [ Po(I -x)]+dd x2 cosh.3o (l- x)]

The xo2 Sinh, bbe(tx)]. (26)

The constants as, bb, c.t c. are given by:
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4G I Ca ilEiti P~o 0to°

bb-- • (-2p2: + 4G A+ (-2poG t: B + 6Po t° d;

p2•t°L 0 Tl~ti) i •iti
ir 2 + G' (-2p30 G tocc= 2 +0 )B+ rE,)A+6I30 t~ddj

dd= 0°B
4t ,

ee= A- A.
4to

Since the constants A, B, C depend only on P, the constants aa, bb, cc, e.t.c.
depend only on P,. The constants D, E, and F can now be found by evaluating
the boundary conditions for 'y(x). These boundary conditions give rise to three
simultaneous equations in which D, E, and F can be solved for in terms of P,.
Thus the solution is fully determined once P, is found. P. is found by setting:

'; •(x)dr = P Eoto (27)

Jo2oto +2Eiti"

The term r(x) is given, on O<x<l, by:

"t(x) =G(Yo(x) + eyi (x))W (28)

and on < x < oc by:

'C(x) = PtG exp(-1 1x). (29)

Figure 8 shows a comparison of the numerical solution for the joint configuration that
follows and the first-order perturbation solution.
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0.025 .

0.020 
NAG numencl result

0015 perturbaton parameter c .0423

0010

0.006 *

0.000- 
A I 

J

0.0 05 1.0 1.6 20

distance along bondline normalised against taper length

Figure 8.

T1 G Eo t° E ý ti 0 1 P

(mm) (E~a) (MPa) (mm) (NiAa) (mm) (degrees) (mm) (N/mm)

0,14 700 208e3 0.13 71e3 6.36 2.42 27 500

Table 2.

The 1 st order perturbation solution shows reasonable agreement with the more accurate
numerical solution. A higher order perturbation expansion for the adhesive shear strain
would be necessary to achieve a more accurate approximation.

2.2. Elastic/Perfectly-Plastic Analysis

2.2.1. Analytical Development

To obtain the solution for the adhesive shear-strain distribution in a joint deforming in an
elastic/perfectly-plastic manner the tapered region must be divided into an elastic region
and a plastic region. Firstly the adhesive shear-stress shear-strain curve is idealised as being
elastic/perfectly-plastic.

In the plastic region a solution is obtained by setting t(x)--nP (the yield stress) in
equation 9:
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d2y _1 TPE~tO 1.
dX0 E2xta -0+tg) EtJ (30)

Integrating equation 30 w.r.t. x yields:

dy =_rpx Ei ti + C. (31)
dx 1 EotanO(xtan0+ to) 1

Integrating once again:

Y(X)=-JPE2--- too In (Xtan 0+ t) 1O
x /Ei ti Etan2 0 + Cx + D. (32)

Applying the boundary condition given by equation 11 to equation 32 yields:

Y(X) ~TPX ,T too In (Xtan e + to)
x) Ei ti Eo tan 20

+ Tp P x + D. (33)+NEotan 0 •Eiti

As in the elastic analysis the other boundary conditions are found by matching. In this case,
however, the adhesive in the tapered region can deform fully plastically or partly plastically
and partly elastically. If the deformation in the taper is fully plastic then equation 33 is
matched with the solution describing adhesive plasticity in the non-tapered double-lap joint
at x=-. That solution is obtained by setting tan0 = 0 in equation 30 and integrating:

d;'- rL=ot- + -" - (34)

and hence,

P2 2 iE4+F. (35)
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This solution is then matched with that assuming adhesive elasticity in the non-tapered
double-lap joint (equation 12) at the plastic-to-elastic transition point. The location of this
transition point is not known a priori and so an iterative scheme was again implemented on
computer to find the full solution by making guesses at the starting strain.

If the adhesive deforms plastically for only part of the scarfed region then a different
procedure is necessary. Equation 33 is now matched with the equation 10 (the solution
assuming adhesive elasticity in the scarfed region) at the plastic-to-elastic transition point.
At x-! equation 10 is matched with the solution assuming adhesive elasticity in the
non-tapered joint (equation 12). A computerised iterative solution was again necessary to
find the full solution.

2.3. An Upper and a Lower Bound for the Peak Shear Strain

It is desirable, from an engineering design viewpoint, to find a simple expression for both
the upper and lower bound for the peak shear-strain in an end-tapered double-lap joint. A
simple approach is to consider two separate double-lap joints. The joint used to estimate
the upper bound would have an outer adherend thickness equal to t. and the joint used to
estimate the lower bound would have an outer thickness of t:. By comparing the results
from the end-tapered double-lap joint model (with fixed values of t. and t:4 but varying
values of 0) with the results from the two double-lap joints the usefulness of the estimates
for the upper and lower bounds can be evaluated. To be useful, at small values of 0 the
peak shear-strain should approach the lower bound and at large values of 0 it should
approach the upper bound. Two cases were investigated: elastic and
elastic/perfectly-plastic adhesive deformation.

2.3.1. Assuming Elastic Adhesive Deformation.

Figure 9 shows the variation of peak shear strain with taper angle when the adhesive is
assumed to deform elastically. The joint parameters are as for Figure 4 with these
exceptions: P=2000 N/mm and Tj=O. 14mm.

0 0

peak
shear
strain 00 "

000

NWe angle

Figure 9.

'0
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The upper bound provides a sound upper limit for the peak shear strain at large angles of
taper but the lower bound underestimates the peak shear strain at small angles of taper.
Taper angles in a repair are typically 2-4' and hence the upper bound may be too
conservative to be used for design purposes. Likewise, the lower bound may be too low to
be used for design purposes (e.g. for a taper angle of 2.70 the actual peak shear strain is
58% greater than the lower bound).

2.3.2. Assuming Elastic/Perfectly-Plastic Adhesive Behaviour

When the adhesive is allowed to deform in an elastic/plastic manner a similar graph is
obtained (Figure 10). In this case the lower bound greatly underestimates the peak
shear strain. Loads high enough to cause adhesive plasticity, however, are rarely
encountered. Table 3 contains the parameters for the joint.

P Ei ti Eo to° t. G TP
(N/mm) (MPa) (mm) (MPa) (mm) (MPa) (MPa) (mm)

4,000 71,000 6.36 205,000 0.13 1.27 750 37 0.13

Table 3.

14

12

upper bownd

peak 1 '

shear o8
strain 06

04

02 ow. bw.nd

00
020 401 60. 802

taper angle

Figure 10.

3. THE STEPPED DOUBLE-LAP JOINT

3.1. Elastic Analysis

3.1.1. Analytical Development

This model of the stepped double-lap joint (Figure lb) applies the solution for the
double-lap joint (equation 16) to each step. Each ply of the outer adherend is assumed to
be of step length I, thickness t., and Young's modulus E.. A joint of this type could be
made by stepping the plies of a fibre composite lay-up to form the outer adherends. The
form of the solution on the kth step is:
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Yk ( =)Aksiflh (13k4)+Bkcosh (!3k*) (36)

where ý is the local coordinate for each step and where

P2=G( I + 2).(7k• =f "'Eoto k Eit "(37

The boundary condition given by equation 11 applies to the first step:

d (0) - PE

=Alp31. (38)

At the end of each step, of length i, continuity of the shear strain must be
enforced, though the derivative of the shear strain may not necessarily be
continuous since the profile of the outer adherend is not smooth.

Therefore,

Yk(l) = Yk+1 (O) (39)

or,

Bk+l=Aksinh (kikl)+Bkcosh (O•k'). (40)

At the start of each step, the derivative of the shear strain is:

dYk( = I T (41)d4,71(E. t k Eji ti )".41

This equation can be derived from equation 7 by setting tanO = 0 and tO=kto•

If the load transferred from the inner to each outer adherend over the kth step is
Fk then at the start of the k+Ith step the tractions are:

k

TO= I Fj, (42)
j=1

and,
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k
Ti=P-2YFj. (43)

j=1

Therefore, from equation 41:

dkp d= dýk(0) = 1( Fj P - 2 Y_,Fj(4

where Fk is given by integrating equation 36:

Fk = GjAk[cosh (pkl) - 11 +B ksfilh( kl)1. (45)

Thus if B, in equation 36 is known then all the coefficients Ak and Bk can be
found. At the start of the last step the shear strain must also be continuous.
The form of the solution for this last (nth) step is as for equation 12:

, Etil3ne 
(46)

Continuity of the shear strain implies:

-EPti =An-, sinh (N-11 )+Bn i cosh (Vn. (47)

The total load transferred from the inner adherend to each of the outer
adherends is:

n-1 P(
J- Ei ti 1p

Therefore, all that remains is to find B, and then all other coefficients can be found from
equations 41 and 45 and P, can be found from equation 47. A computerised iterative
scheme was again implemented in which repeated estimates were made of B, and the load
transferred to the outer adherends calculated (from equation 48) until that value was to

equal to P Eo to
2Eon to +Ei ti

3.1.2. Comparison of the Elastic Model with an FE Analysis

An FE analysis of a stepped double-lap joint was set up in PAFEC. The model was similar,
in terms of element type and spacing, to the end-tapered double-lap joint model. Once
again, only one quarter of the joint needed to be modelled due to the symmetry of the joint.

L~.
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The adhesive shear strain was again calculated by subtracting displacements across the
adhesive layer and dividing by the adhesive thickness. Three joints were modelled and the
table of their joint parameters and figure numbers are shown below. The figures show
excellent agreement between the mathematical model and the FE results.

Figure 11 Figure 12 Figure 13

E. (MPa) 208,000 208,000 138,000

t. (mm) 0.13 0.13 0.15

E, (MPa) 71,000 71,000 71,000

t1 (mm) 6.36 6.36 6.36

n (no. steps) 10 10 10

I (mm) 3 5 5

P (N/mm) 2,000 2,000 2,667

G (MPa) 590 590 590

TI (mm) 0.1 0.2 0.2

Table 4.

0.10 0 FL. Resubt

0.06.

0.04.

0.02-

0.001
0 1'D 2D 0 40

distance along joint (mm)

Figure 11.
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0.06

0.02

0.0 L - - -10 20 30 40 50 60

distance along joint (mm)

Figure 12.

0.10

o F.E Resuts

0.08 AMlytco Resufts

0.06

7 0.04

0.02

0.00 0 0 A • , i°
0 10 20 30 40 50 6

distance along joint (mm)

Figure 13.

*
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3.1.3. An Upper and a Lower Bound for the Peak Shear Strain

Bounds for the peak shear strain in the adhesive assuming elastic deformation can be
developed in much the same way as for the end-tapered double-lap joint. The lower bound
is taken to be the adhesive shear strain when only one outer-adherend ply is present. The
upper bound is taken to be the adhesive shear strain when all plies are present in a
non-stepped geometry. Table five below has the parameters for this joint. The results are
shown in figure 14.

P (N/ram) Ei (MPa) ti (mm) Eo (MPa) to (mm) n G (MPa) 11 (mm)

1,500 71,000 6.36 205,000 0.13 5 750 0.13

Table 5.

The lower bound is quite sound for this joint configuration. The peak shear strain for this
joint with a step length greater than 6 mm can be readily approximated by a joint having a
single outer-adherend ply. This step length is equivalent to a taper angle of about 1.20. A
typical step length is about 3 mm (2.60) in which case the lower bound underestimates the
peak shear strain by about 20%.

o 12

Oil

010o upper bound

peak 009
shear 000.
strain 007

00o lower bound
- • *- - *-*-~*-Q--4 -

005.

004
0 2 ic5 1 12 14 16

step length (mm)

Figure 14.

3.2. Elastic/Perfectly-Plastic Analysis

3.2.1. An~alytical Development

Solving for the elastic perfectly-plastic adhesive shear strain distribution in a stepped
double-lap joint is similar to solving that for the elastic case except that the adhesive under
each step can now also deform fully plastically or partly plastically and partly elastically.

The solution assuming perfectly-plastic adhesive deformation on the kth step is
as given by equation 35:
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Yk( 2 Pk -+CJ+D, (49)

where ý is a local coordinate for each step. The boundary condition given by
equations 11 still applies. Hence, on the first step the constant C in the above
equation is:

C= -EP (50)'1E1 ti

If on any step there is a transition from plastic-to-elastic adhesive deformation
then the shear strain and its derivative given by equation 50 is matched with the
elastic solution (equation 37). At the end of each step continuity of the shear
strain is enforced.

The derivative of the shear strain at the start of the kth step is given by
equation 41:

d>O)1 T,, T (51)(0) 1 ( T

d,, TIkEt

The traction T. at the .tart of kth step is found by integrating equation 1 for the
previous k-I steps. The traction T, is simply equal to P-2T. Thus once the
shear strain at the start of the first step is known the full solution can be found,

Once again a computerised iterative scheme was implemented whereby repeated guesses
were made at the starting shear strain until the load transferred was equal to
p E,, t,,

2 Eont, + E, t'

4. COMPARISON OF THE END-TAPERED AND THE STEPPED DOUBLE-LAP
JOINT MODELS

4.1. Assuming Elastic Adhesive Deformation.

Table 6 contains the joint parameters used in the model of an end-tapered double-lap joint
and in the model of an equivalent stepped double-lap joint assuming elastic adhesive
deformation The adhesive shear strains and outer adherend strains for these two joints
appear in the figures that follow.
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Figures 15 and 16

End-tapered Double-Lap Joint 0 (degrees) 2.7

1 (mm) 27

t", (ram) 0.13

Stepped Double-Lap Joint t. (mm) 0.13

n (no. steps) 10

step length (mm) 3

Table 6.

0.16

0.14 . end-scarfed double-lap joint

0o12 stepped double-lap joint

010

adhesive
shear 

0.08

strain 006-

004

002

0.00
0 10 20 30 40

distance along joint (mm)

Figure 15.
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0.006 end-scarfed double-lap joint

strain in the 0.004o

outer
adherend

0.002l

0 10 20 30 40

distance along the joint (mm)

Figure 16.

Significantly, however, the stepped double-lap joint does predict a lower peak shear strain.
The outer adherend strains are close in an average sense.

4.2. Assuming Elastic/Perfectly-Plastic Adhesive Deformation.

Table 7 contains the joint parameters used in the model of an end-tapered double-lap joint
and in the model of an equivalent stepped double-lapjoint assuming elastic/perfectly-plastic
adhesive deformation. The adhesive shear strains and outer adherend strains for these two
joints appear in the figures that follow.

Figures 17 and 18

End-tapered Double-Lap 0 (degrees) 19Joint 1 (mm) 27

to° (rm) 0.15

Stepped Double-Lap Joint to (mm) 0.15

n (no. steps) 10
step length (mm) 3

Table 7.I
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Allowing the adhesive to deform in an elastic/perfectly-plastic manner leads to a slight
divergence but still similar prediction of the adhesive shear strains by the two models. The
predicted outer adherend strains for the two joints remain close in an average sense.

025

- - - and-sa~rled double-lap jornt

020 stopped double-lap joint

adhesive 0.15

shear
strain o0.1

ysdsrain
0.05

0.00 , i , I I , I

0 10 2D 30 40 50

distance along joint (mm)

Figure 17.

0.004

r o l.stra :l double-lap jolm

0.003

microstrain
in the outer
adherend 0.002

0.001

0 10 20 30 40 50

distance along joint (mm)

Figure 16.
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4.3. Comparison of the Two Models with Measured Outer-Adherend Strains

The ability of the two models to predict strain in the outer adherend of an actual joint
(Figure 1 c) was investigated. A strip of strain gauges was bonded to the outer adherend of
a boron/epoxy doubler near the end of the taper. The joint was loaded and the strain
measured. The results and the predicted strains (calculated using the elastic models) are
shown in Figure 19.

Sstepped double-lap joint model
- - end-scarled double-lap joint model

800. N measured strains

6OO.

Strain in the
Outer

Adherend 400

200.

0.ý
0 5 10 15 2

distance along joint (mm)

Figure 19.

Clearly, the stepped structure of the doubler is reflected in the strain measured on the outer
ply. The stepped double-lap joint model is better suited to describing the lack of
smoothness in the strain/distance curve though the end-tapered model is accurate in an
average sense. The boron/epoxy doubler consisted of 10 plies and a step length of 3mm.
The resultant taper angle was about 2.50. Five strain gauges were bonded to the doubler:
the strain gauges were spaced 2mm apart starting at 3mm from the end of the doubler.

5. CONCLUSION

Two alternative mathematical models have been successfully developed to predict adhesive
shear strains in fibre-composite reinforcements. The validity of both the end-tapered
double-lap joint model and the stepped double-lap joint model has been verified by an
elastic finite-element analysis. For a typical repair or doubler geometry the two models
yield approximately the same adhesive shear strains for both elastic and elastic/perfectly
plastic analyses. The end-tapered double-lap joint model is numerically more stable than
the stepped double-lap joint model and is perhaps therefore more useful in predicting
adhesive shear strains. The stepped double-lap joint model, however, gives a better
prediction of the strains in the outer adherend. Estimation of the peak shear strain in the
stepped double-lap joint may be simplified by using a single ply model for certain joint
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configurations. The stepped double-lap joint geometry appears to be more effective for
repair than the end-tapered double-lap joint geometry as the predicted peak shear stress is
lower. The two models could be useful design tools when used in conjunction with
adhesive design allowables such as the fatigue threshold, the yield strain, and the strain to
failure.
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